V = 1749.45 (10) Å³

 $0.49 \times 0.36 \times 0.24 \text{ mm}$

15028 measured reflections

3534 independent reflections

3079 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^-$

Z = 4

T = 100 K

 $R_{\rm int}=0.037$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6a-Hydroxy-5,6-dihydrosalviasperanol

Safra Izuani Jama Asik,^a Ibrahim Abdul Razak,^a Abdul Wahab Salae,^b Suchada Chantrapromma^b[‡] and Hoong-Kun Fun^a*§

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

Correspondence e-mail: hkfun@usm.my

Received 15 October 2010; accepted 17 October 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.107; data-to-parameter ratio = 15.2.

In the title compound, C₂₀H₂₈O₄, a diterpenoid isolated from the roots of Premna obtusifolia (Verbenaceae), the fivemembered ring is in a half-chair conformation. One sixmembered ring exists in a twisted-boat conformation while the other is in half-boat conformation. The crystal packing is stabilized by intermolecular O-H···O and weak C-H···O interactions, generating (001) sheets.

Related literature

For background to Verbenaceae, diterpenes and their biological activity, see: Hymavathi et al. (2009); Bunluepuech & Tewtrakul (2009); Esquivel et al. (1995). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data

C20H28O4 $M_r = 332.42$ Orthorhombic, $P2_12_12_1$ a = 6.2767 (2) Å b = 11.7358 (4) Å c = 23.7496 (7) Å

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{\min} = 0.959, T_{\max} = 0.979$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture of
$wR(F^2) = 0.107$	independent and constrained
S = 1.15	refinement
3534 reflections	$\Delta \rho_{\rm max} = 0.36 \text{ e } \text{\AA}^{-3}$
233 parameters	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$ \begin{array}{c} \hline & \\ O3 - H1O3 \cdots O2^{i} \\ O4 - H1O4 \cdots O1^{ii} \\ C18 - H18B \cdots O3^{iii} \end{array} $	0.85 (3)	2.01 (3)	2.8504 (17)	169 (3)
	0.84 (3)	1.89 (3)	2.7089 (16)	165 (3)
	0.96	2.55	3.407 (2)	149

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) x - 1, y, z; (iii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

SIJA, IAR and HKF thank Universiti Sains Malaysia for the Research University Grant (No.1001/PFIZIK/811151). SC thanks the Prince of Songkla University for generous support through the Crystal Materials Research Unit.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5689).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA

Bunluepuech, K. & Tewtrakul, S. (2009). Songklanakarin J. Sci. Technol. 31, 289-292.

- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Esquivel, B., Flores, M., Hernandez-Ortega, S., Toscano, R. A. & Ramamoorthy, T. P. (1995). Phytochemistry, 39, 139-143.

Hymavathi, A., Babu, K. S., Naidu, V. G. M., Krishna, S. R., Diwan, P. V. & Rao, J. M. (2009). Bioorg. Med. Chem. Lett. 19, 5727-5731.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[‡] Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009. § Thomson Reuters ResearcherID: A-3561-2009.

Acta Cryst. (2010). E66, o2899 [doi:10.1107/S160053681004208X]

60-Hydroxy-5,6-dihydrosalviasperanol

S. I. J. Asik, I. A. Razak, A. W. Salae, S. Chantrapromma and H.-K. Fun

Comment

Plants of the family Verbenaceae were found to possess interesting biological properties such as cytotoxicity (Hymavathi *et al.*, 2009) and anti-HIV-1 integrase activities (Bunluepuech & Tewtrakul, 2009). The phytochemistry study of the aerial parts of *Premna obtusifolia* (Verbenaceae), a small tree found in the mangrove forests which were collected from Satun province in the southern part of Thailand, led to the isolation of diterpenes. The title compound which is known as 5,6-di-hydroxysalviasperanol (Esquivel *et al.*, 1995) is one of the isolated compounds from this plant. Herein we report the crystal structure of the title compound (I).

The bond lengths show normal values (Allen *et al.*, 1987). The pyrocatechol, C8/C9/C11–C14/O3/O4, is planar with the maximum deviation of 0.006Å for atom C12. The five-membered ring, C5–C7/C10/O1, is in half-chair conformation with the puckering parameter Q = 0.4588 (16)Å, $\varphi = 194.0$ (2)°. The six-membered ring, C1–C5/C10 adopts twisted-boat conformation with puckering parameter Q = 0.6536 (18)Å, $\theta = 79.56$ (16)° and $\varphi = 156.60$ (16)°. The other six-membered ring, C7–C10/C20/O1, is in half-boat conformation with puckering parameter Q = 0.5929 (15)Å, $\theta = 47.83$ (15)° and $\varphi = 347.9$ (2)° (Cremer & Pople 1975). The torsion angles of propanyl group attached to the pyrocatechol ring are C14–C13–C15–C17 = -101.80 (19)° and C14–C13–C15–C16 = 78.55 (19)°.

The crystal packing of (I) is stabilized by intermolecular O3—H1O3···O2 and O4—H1O4···O1 and weak C18—H18B···O3 interactions. The molecules are linked into infinite two dimensional networks parallel to *ab* plane.

Experimental

The air-dried roots of *Premna obtusifolia* (4.5 kg) were extracted with CH_2Cl_2 (2 x 20 L) under room temperature. The combined extracts were concentrated under reduced pressure to give a dark yellow extract (40.5g) which was subjected to quick column chromatography (QCC) over silicagel using solvents of increasing polarity from n–hexane to EtOAc to afford 12 fractions (F1–F12). Fraction F10 was further purified by QCC using CH_2Cl_2 –EtOAc (3:7), yielding compound (I) (145.8 mg). Colorless block-shaped single crystals of (I) were recrystallized from CH_2Cl_2 after several days (m.p.461–463 K).

Refinement

Anomalous dispersion was negligible and Friedel pairs were merged before refinement. O bound H atoms were located from the difference map and isotropically refined. The remaining H atoms were placed in calculated positions with (C—H) = 0.98 for CH, 0.97 for CH₂, 0.96 for CH₃ and 0.93 Å for CH in benzene group. The U_{iso} values were constrained to be $1.5U_{eq}$ of the carrier atom for methyl H atoms and $1.2U_{eq}$ for the remaining H atoms. A rotating group model was used for the methyl groups.

Figures

Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids.

Fig. 2. The crystal packing of (I) viewed along the a axis, showing infinite two dimensional networks parallel to ab plane. Hydrogen bonds are shown as dashed lines.

6α-Hydroxy-5,6-dihydrosalviasperanol

Crystal data	
C ₂₀ H ₂₈ O ₄	F(000) = 720
$M_r = 332.42$	$D_{\rm x} = 1.262 \ {\rm Mg \ m}^{-3}$
Orthorhombic, <i>P</i> 2 ₁ 2 ₁ 2 ₁	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 6222 reflections
a = 6.2767 (2) Å	$\theta = 2.4 - 32.3^{\circ}$
<i>b</i> = 11.7358 (4) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 23.7496 (7) Å	T = 100 K
$V = 1749.45 (10) \text{ Å}^3$	Block, colourless
Z = 4	$0.49 \times 0.36 \times 0.24 \text{ mm}$

Data collection

3534 independent reflections
3079 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.037$
$\theta_{\text{max}} = 32.4^\circ, \ \theta_{\text{min}} = 2.4^\circ$
$h = -8 \rightarrow 9$
$k = -17 \rightarrow 16$
<i>l</i> = −34→35

Refinement

Refinement on F^2

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.041$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites

$wR(F^2) = 0.107$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.15	$w = 1/[\sigma^2(F_o^2) + (0.0548P)^2 + 0.2019P]$ where $P = (F_o^2 + 2F_c^2)/3$
3534 reflections	$(\Delta/\sigma)_{max} < 0.001$
233 parameters	$\Delta \rho_{max} = 0.36 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.25 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.7000 (2)	0.51248 (9)	0.29871 (5)	0.0162 (2)
O2	0.3927 (2)	0.76867 (10)	0.28241 (5)	0.0179 (2)
H1O2	0.295 (4)	0.730 (2)	0.2677 (10)	0.035 (7)*
O3	-0.1349 (2)	0.42654 (11)	0.15694 (5)	0.0212 (3)
H1O3	-0.199 (5)	0.379 (2)	0.1782 (10)	0.036 (7)*
O4	-0.0204 (2)	0.35135 (9)	0.26393 (5)	0.0175 (2)
H1O4	-0.122 (5)	0.391 (2)	0.2762 (10)	0.034 (7)*
C1	0.6494 (3)	0.43356 (13)	0.39056 (7)	0.0193 (3)
H1A	0.7202	0.3676	0.3746	0.023*
H1B	0.5407	0.4058	0.4162	0.023*
C2	0.8142 (3)	0.50212 (15)	0.42483 (7)	0.0231 (3)
H2A	0.8018	0.4811	0.4642	0.028*
H2B	0.9560	0.4811	0.4124	0.028*
C3	0.7889 (3)	0.63252 (15)	0.41961 (7)	0.0200 (3)
H3A	0.8483	0.6684	0.4529	0.024*
H3B	0.8699	0.6588	0.3873	0.024*
C4	0.5563 (3)	0.67027 (13)	0.41290 (6)	0.0162 (3)
C5	0.4707 (3)	0.62326 (12)	0.35629 (6)	0.0141 (3)
H5A	0.3147	0.6257	0.3574	0.017*
C6	0.5467 (3)	0.69065 (12)	0.30370 (6)	0.0141 (3)
H6A	0.6753	0.7334	0.3138	0.017*
C7	0.6093 (3)	0.59624 (12)	0.26148 (6)	0.0146 (3)
H7A	0.7152	0.6239	0.2344	0.018*

C8	0.4169 (3)	0.54859 (12)	0.23181 (6)	0.0145 (3)
C9	0.2902 (3)	0.47081 (12)	0.26130 (6)	0.0144 (3)
C10	0.5406 (3)	0.49841 (12)	0.34320 (6)	0.0147 (3)
C11	0.1059 (3)	0.43033 (12)	0.23603 (6)	0.0145 (3)
C12	0.0464 (3)	0.46583 (13)	0.18190 (6)	0.0155 (3)
C13	0.1739 (3)	0.54262 (13)	0.15161 (6)	0.0161 (3)
C14	0.3583 (3)	0.58331 (12)	0.17780 (6)	0.0154 (3)
H14A	0.4443	0.6350	0.1587	0.018*
C15	0.1063 (3)	0.57665 (14)	0.09244 (6)	0.0196 (3)
H15A	0.0468	0.5085	0.0745	0.023*
C16	0.2922 (3)	0.61702 (16)	0.05555 (7)	0.0237 (4)
H16A	0.2431	0.6281	0.0177	0.036*
H16B	0.4030	0.5606	0.0559	0.036*
H16C	0.3468	0.6876	0.0700	0.036*
C17	-0.0714 (3)	0.66608 (18)	0.09427 (8)	0.0286 (4)
H17A	-0.1905	0.6364	0.1150	0.043*
H17B	-0.1153	0.6841	0.0566	0.043*
H17C	-0.0197	0.7338	0.1124	0.043*
C18	0.5432 (3)	0.80127 (14)	0.41448 (7)	0.0205 (3)
H18A	0.5862	0.8280	0.4510	0.031*
H18B	0.3994	0.8248	0.4072	0.031*
H18C	0.6359	0.8326	0.3863	0.031*
C19	0.4188 (3)	0.62608 (15)	0.46181 (6)	0.0213 (3)
H19A	0.4798	0.6501	0.4969	0.032*
H19B	0.4136	0.5444	0.4606	0.032*
H19C	0.2771	0.6561	0.4585	0.032*
C20	0.3572 (3)	0.42821 (12)	0.31863 (6)	0.0158 (3)
H20A	0.4012	0.3492	0.3156	0.019*
H20B	0.2363	0.4316	0.3440	0.019*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
01	0.0152 (6)	0.0138 (5)	0.0197 (5)	0.0030 (4)	0.0026 (4)	0.0022 (4)
O2	0.0206 (6)	0.0119 (5)	0.0213 (5)	0.0033 (5)	-0.0016 (5)	0.0015 (4)
O3	0.0204 (7)	0.0206 (5)	0.0226 (5)	-0.0081 (5)	-0.0026 (5)	0.0026 (4)
O4	0.0182 (6)	0.0109 (5)	0.0234 (5)	-0.0024 (4)	0.0037 (5)	0.0006 (4)
C1	0.0231 (9)	0.0138 (6)	0.0211 (6)	0.0039 (6)	-0.0016 (6)	0.0029 (5)
C2	0.0221 (9)	0.0215 (8)	0.0257 (7)	0.0055 (7)	-0.0053 (7)	0.0015 (6)
C3	0.0194 (8)	0.0193 (7)	0.0214 (7)	-0.0001 (7)	-0.0029 (6)	-0.0001 (6)
C4	0.0188 (8)	0.0126 (6)	0.0173 (6)	-0.0004 (6)	-0.0016 (6)	0.0002 (5)
C5	0.0145 (7)	0.0107 (6)	0.0171 (6)	0.0005 (6)	0.0002 (5)	0.0004 (5)
C6	0.0144 (7)	0.0111 (6)	0.0168 (6)	0.0006 (6)	-0.0005 (5)	-0.0001 (5)
C7	0.0153 (7)	0.0120 (6)	0.0165 (6)	0.0000 (6)	0.0008 (5)	0.0015 (5)
C8	0.0147 (8)	0.0115 (6)	0.0174 (6)	0.0003 (5)	0.0014 (5)	-0.0010 (5)
C9	0.0162 (7)	0.0102 (6)	0.0168 (6)	0.0009 (5)	0.0023 (6)	-0.0011 (5)
C10	0.0139 (7)	0.0122 (6)	0.0180 (6)	0.0007 (6)	0.0007 (5)	0.0013 (5)
C11	0.0161 (7)	0.0086 (5)	0.0189 (6)	-0.0002 (5)	0.0037 (5)	-0.0002 (5)

C12	0.0146 (8)	0.0120 (6)	0.0198 (6)	-0.0009 (6)	0.0003 (6)	-0.0019 (5)
C13	0.0184 (8)	0.0130 (6)	0.0168 (6)	0.0008 (6)	0.0011 (6)	-0.0012 (5)
C14	0.0169 (8)	0.0118 (6)	0.0174 (6)	-0.0009 (6)	0.0027 (5)	-0.0009 (5)
C15	0.0236 (9)	0.0180 (7)	0.0171 (6)	-0.0057 (7)	-0.0017 (6)	0.0002 (5)
C16	0.0324 (10)	0.0202 (7)	0.0186 (6)	-0.0058 (8)	0.0027 (7)	-0.0002 (6)
C17	0.0235 (10)	0.0304 (9)	0.0318 (8)	0.0020 (8)	-0.0039(7)	0.0089(7)
C18	0.0269 (9)	0.0144 (6)	0.0203 (6)	0.0009 (7)	-0.0026 (7)	-0.0020 (5)
C19	0.0262 (9)	0.0206 (7)	0.0171 (6)	0.0005 (7)	0.0028 (6)	0.0013 (6)
C20	0.0193 (8)	0.0100 (6)	0.0181 (6)	-0.0015 (6)	0.0011 (6)	0.0006 (5)
Geometric parar	neters (Å. °)					
01 C7		1 4205 (19)	C	C14	1.20	(2)
01-C/		1.4395 (18)	C8—	-C14	1.3	95 (2)
Ol = Clo		1.4047 (19)	C8—	-09	1.3	99 (2) 87 (2)
02 - 02		1.4244(19)	C9—	-C11	1.50	57(2)
02—FI102		0.84(3)	C9—	-C20	1.5	10(2)
03-012		1.303(2)	C10-	-C20	1.5.	(2)
03—fi103		0.83(3)	C11-		1.40	$J_{2}(2)$
04—C11		1.3882(18)	C12-		1.40	(2)
04—п104		0.84(3)	C13-		1.5	70(2)
CI = CI0		1.520(2)	C13-		1.5.	21 (2)
C1 = C2		1.343 (3)	C14-	$-\Pi I4A$	0.9.	$\frac{1}{2}$
CI = HIR		0.9700	C15-		1.5.	52(3)
C_1 C_2 C_3		1.544(2)	C15-	-C10 	1.5.	200
$C_2 = C_3$		1.344 (2)	C15-	—ПІЗА ЦІба	0.90	500
$C_2 = H_2 R$		0.9700	C16-		0.90	500
C_2 — I_1ZB		1 535 (3)	C16-	-1110D H16C	0.90	500
C3_H3A		0.9700	C10-		0.90	500
C3—H3B		0.9700	C17-		0.90	500
C4-C19		1,537(2)	C17-	_H17C	0.90	500
C4-C18		1.537(2) 1 540(2)	C18-	_H18A	0.90	500
C4-C5		1.549(2)	C18-	_H18B	0.90	500
C5-C6		1.553 (2)	C18-	-H18C	0.90	500
C5-C10		1.561 (2)	C19-	_H19A	0.90	500
С5—Н5А		0.9800	C19-	_H19B	0.90	500
C6—C7		1 545 (2)	C19-	-H19C	0.90	500
С6—Н6А		0.9800	C20-	-H20A	0.9	700
C7—C8		1.506 (2)	C20-	-H20B	0.9	700
С7—Н7А		0.9800				
C7—O1—C10		104.47 (12)	01—	-C10—C20	107	.42 (12)
C6—O2—H1O2		107.5 (18)	C1—	-C10—C20	110	.51 (12)
C12—O3—H1O3	;	110.8 (18)	01—	-C10—C5	103	.28 (11)
C11—O4—H1O4	Ļ	103.5 (18)	C1—	-C10—C5	116	.68 (12)
C10-C1-C2		115.50 (13)	C20-	C10C5	111	.72 (13)
C10—C1—H1A		108.4	С9—	-C11—O4	119	.91 (13)
С2—С1—Н1А		108.4	С9—	-C11—C12	121	.15 (14)
C10—C1—H1B		108.4	04—	-C11—C12	118	.93 (14)
C2—C1—H1B		108.4	03—	-C12—C11	121	.38 (14)

H1A—C1—H1B	107.5	O3—C12—C13	118.05 (13)
C3—C2—C1	113.94 (14)	C11—C12—C13	120.57 (15)
С3—С2—Н2А	108.8	C14—C13—C12	117.61 (14)
C1—C2—H2A	108.8	C14—C13—C15	123.51 (14)
C3—C2—H2B	108.8	C12—C13—C15	118.88 (15)
C1—C2—H2B	108.8	C8—C14—C13	121.84 (14)
H2A—C2—H2B	107.7	C8—C14—H14A	119.1
C4—C3—C2	113.11 (15)	C13—C14—H14A	119.1
С4—С3—Н3А	109.0	C13—C15—C17	110.89 (14)
С2—С3—НЗА	109.0	C13—C15—C16	113.37 (15)
C4—C3—H3B	109.0	C17—C15—C16	111.00 (15)
С2—С3—Н3В	109.0	C13—C15—H15A	107.1
НЗА—СЗ—НЗВ	107.8	C17—C15—H15A	107.1
C3—C4—C19	111.00 (13)	C16—C15—H15A	107.1
C3—C4—C18	109.66 (15)	C15—C16—H16A	109.5
C19—C4—C18	106.77 (14)	C15—C16—H16B	109.5
C3—C4—C5	108.49 (13)	H16A—C16—H16B	109.5
C19—C4—C5	109.94 (14)	C15—C16—H16C	109.5
C18—C4—C5	110.99 (13)	H16A—C16—H16C	109.5
C4—C5—C6	114.20 (12)	H16B—C16—H16C	109.5
C4—C5—C10	114.19 (13)	C15—C17—H17A	109.5
C6—C5—C10	103.40 (11)	C15—C17—H17B	109.5
С4—С5—Н5А	108.3	H17A—C17—H17B	109.5
С6—С5—Н5А	108.3	C15—C17—H17C	109.5
С10—С5—Н5А	108.3	H17A—C17—H17C	109.5
O2—C6—C7	113.77 (12)	H17B—C17—H17C	109.5
O2—C6—C5	113.85 (13)	C4—C18—H18A	109.5
C7—C6—C5	103.57 (11)	C4—C18—H18B	109.5
O2—C6—H6A	108.5	H18A—C18—H18B	109.5
С7—С6—Н6А	108.5	C4—C18—H18C	109.5
С5—С6—Н6А	108.5	H18A—C18—H18C	109.5
O1—C7—C8	110.55 (12)	H18B-C18-H18C	109.5
O1—C7—C6	101.05 (11)	C4—C19—H19A	109.5
C8—C7—C6	111.48 (13)	C4—C19—H19B	109.5
O1—C7—H7A	111.1	H19A—C19—H19B	109.5
С8—С7—Н7А	111.1	С4—С19—Н19С	109.5
С6—С7—Н7А	111.1	H19A—C19—H19C	109.5
C14—C8—C9	120.06 (15)	H19B—C19—H19C	109.5
C14—C8—C7	122.22 (13)	C9—C20—C10	112.02 (12)
C9—C8—C7	117.66 (13)	C9—C20—H20A	109.2
C11—C9—C8	118.76 (14)	C10-C20-H20A	109.2
C11—C9—C20	120.60 (14)	С9—С20—Н20В	109.2
C8—C9—C20	120.59 (14)	C10-C20-H20B	109.2
O1—C10—C1	106.44 (13)	H20A—C20—H20B	107.9
C10—C1—C2—C3	19.7 (2)	C2-C1-C10-C20	-171.02 (14)
C1—C2—C3—C4	33.4 (2)	C2-C1-C10-C5	-42.0 (2)
C2—C3—C4—C19	56.16 (18)	C4—C5—C10—O1	-106.69 (14)
C2—C3—C4—C18	173.89 (13)	C6—C5—C10—O1	17.99 (15)
C2—C3—C4—C5	-64.74 (16)	C4—C5—C10—C1	9.7 (2)

C3—C4—C5—C6	-77.19 (16)	C6-C5-C10-C1	134.36 (14)
C19—C4—C5—C6	161.26 (14)	C4C5C10C20	138.16 (14)
C18—C4—C5—C6	43.4 (2)	C6C5C10C20	-97.16 (14)
C3—C4—C5—C10	41.52 (17)	C8—C9—C11—O4	178.72 (13)
C19—C4—C5—C10	-80.04 (17)	C20—C9—C11—O4	1.1 (2)
C18—C4—C5—C10	162.07 (14)	C8—C9—C11—C12	0.2 (2)
C4—C5—C6—O2	-100.27 (16)	C20—C9—C11—C12	-177.48 (14)
C10—C5—C6—O2	135.06 (13)	C9—C11—C12—O3	-179.81 (14)
C4—C5—C6—C7	135.67 (14)	O4—C11—C12—O3	1.6 (2)
C10—C5—C6—C7	11.00 (16)	C9-C11-C12-C13	0.7 (2)
C10—O1—C7—C8	-67.98 (14)	O4-C11-C12-C13	-177.83 (14)
C10—O1—C7—C6	50.16 (14)	O3—C12—C13—C14	179.36 (14)
O2—C6—C7—O1	-160.80 (13)	C11—C12—C13—C14	-1.2 (2)
C5—C6—C7—O1	-36.69 (15)	O3—C12—C13—C15	-1.0 (2)
O2—C6—C7—C8	-43.34 (17)	C11—C12—C13—C15	178.49 (14)
C5—C6—C7—C8	80.77 (14)	C9—C8—C14—C13	0.1 (2)
O1—C7—C8—C14	-149.31 (14)	C7—C8—C14—C13	-176.94 (14)
C6—C7—C8—C14	99.13 (16)	C12—C13—C14—C8	0.8 (2)
O1—C7—C8—C9	33.56 (18)	C15—C13—C14—C8	-178.89 (15)
C6—C7—C8—C9	-77.99 (16)	C14—C13—C15—C17	-101.80 (19)
C14—C8—C9—C11	-0.6 (2)	C12-C13-C15-C17	78.55 (19)
C7—C8—C9—C11	176.60 (13)	C14—C13—C15—C16	23.9 (2)
C14—C8—C9—C20	177.05 (14)	C12-C13-C15-C16	-155.80 (15)
C7—C8—C9—C20	-5.8 (2)	C11—C9—C20—C10	-169.78 (14)
C7-01-C10-C1	-166.58 (12)	C8—C9—C20—C10	12.6 (2)
C7—O1—C10—C20	75.03 (13)	O1—C10—C20—C9	-46.44 (16)
C7—O1—C10—C5	-43.17 (14)	C1-C10-C20-C9	-162.17 (13)
C2-C1-C10-01	72.64 (16)	C5-C10-C20-C9	66.15 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
O3—H1O3···O2 ⁱ	0.85 (3)	2.01 (3)	2.8504 (17)	169 (3)
O4—H1O4…O1 ⁱⁱ	0.84 (3)	1.89 (3)	2.7089 (16)	165 (3)
C18—H18B····O3 ⁱⁱⁱ	0.96	2.55	3.407 (2)	149
Symmetry codes: (i) $-x$, $y-1/2$, $-z+1/2$; (ii) $x-1$, y , z ; (iii) $-x$, $y+1/2$, $-z+1/2$.				

